Zavolejte nám
+420 702 930 442

0Item(s)

V košíku nejsou žádné položky.

Vyhledávejte v miliónech knih všech žánrů v angličtině

Product was successfully added to your shopping cart.
  • Obálka knihy  Hyperbolicity of Projective Hypersurfaces od Diverio Simone, ISBN:  9783319323145 Obálka knihy  Hyperbolicity of Projective Hypersurfaces od Diverio Simone, ISBN:  9783319323145

Hyperbolicity of Projective Hypersurfaces

Od

This book presents recent advances on Kobayashi hyperbolicity in complex geometry, especially in connection with projective hypersurfaces. This is a very active field, not least because of the fascinating relations with complex algebraic and arithmetic geometry. Foundational works of Serge Lang and Paul A. Vojta, among others, resulted in precise conjectures regarding the interplay of these research fields (e.g. existence of Zariski dense entire curves should correspond to the (potential) density of rational points).

Perhaps one of the conjectures which generated most activity in Kobayashi hyperbolicity theory is the one formed by Kobayashi himself in 1970 which predicts that a very general projective hypersurface of degree large enough does not contain any (non-constant) entire curves. Since the seminal work of Green and Griffiths in 1979, later refined by J.-P. Demailly, J. Noguchi, Y.-T. Siu and others, it became clear that a possible general strategy to attack this problem was to look at particular algebraic differential equations (jet differentials) that every entire curve must satisfy. This has led to some several spectacular results. Describing the state of the art around this conjecture is the main goal of this work.

  • Jazyk: Angličtina
  • Vazba: Pevná vazba
  • ISBN13 (EAN): 9783319323145
  • Kategorie: Algebraic geometry
  • Počet stran: 103
  • Rozměry (mm): 235 x 155 x 8
  • Vydavatel: Springer International Publishing AG
  • Rok vydání: 2016

Poštovné už od 39 Kč a při objednávce nad 1199 Kč doprava na pobočku Zásilkovny zdarma
Sleva:19%
(Ušetříte 687 Kč)
2 927,00 Kč

  • VELKÝ VÝBĚR

    Nabízíme miliony knih v angličtině. Od beletrie až po ty nejodborněji odborné.

  • POŠTOVNÉ ZDARMA

    Poštovné už od 39 Kč a při objednávce nad 1199 Kč doprava na pobočku Zásilkovny zdarma

  • OVĚŘENO ZÁKAZNÍKY

    Získali jsme certifikát "Ověřeno zákazníky" na Heureka.cz. Prohlédněte si naše recenze

  • SKVĚLÉ CENY

    Ceny knih se snažíme držet při zemi a vždy pod cenou doporučovanou vydavatelem, aby si je mohl koupit opravdu každý.

  • ONLINE PODPORA

    Můžete využít online chatu, emailu nebo nám zatelefonovat.

  • OSOBNÍ PŘÍSTUP

    Nejdůležitější je pro nás Vaše spokojenost. Prodáváme knihy, protože je milujeme. Nejsme žádní nadnárodní giganti, ale poctivá česká firma.

Details

This book presents recent advances on Kobayashi hyperbolicity in complex geometry, especially in connection with projective hypersurfaces. This is a very active field, not least because of the fascinating relations with complex algebraic and arithmetic geometry. Foundational works of Serge Lang and Paul A. Vojta, among others, resulted in precise conjectures regarding the interplay of these research fields (e.g. existence of Zariski dense entire curves should correspond to the (potential) density of rational points).

Perhaps one of the conjectures which generated most activity in Kobayashi hyperbolicity theory is the one formed by Kobayashi himself in 1970 which predicts that a very general projective hypersurface of degree large enough does not contain any (non-constant) entire curves. Since the seminal work of Green and Griffiths in 1979, later refined by J.-P. Demailly, J. Noguchi, Y.-T. Siu and others, it became clear that a possible general strategy to attack this problem was to look at particular algebraic differential equations (jet differentials) that every entire curve must satisfy. This has led to some several spectacular results. Describing the state of the art around this conjecture is the main goal of this work.

  1. Be the first to review this product

Související kategorie